Positivity Questions for Cylindric Skew Schur Functions

نویسنده

  • PETER MCNAMARA
چکیده

Recent work of A. Postnikov shows that cylindric skew Schur functions, which are a generalisation of skew Schur functions, have a strong connection with a problem of considerable current interest: that of finding a combinatorial proof of the non-negativity of the 3-point Gromov-Witten invariants. After explaining this motivation, we study cylindric skew Schur functions from the point of view of Schur-positivity. Using a result of I. Gessel and C. Krattenthaler, we generalise a formula of A. Bertram, I. Ciocan-Fontanine and W. Fulton, thus giving an expansion of an arbitrary cylindric skew Schur function in terms of skew Schur functions. While we show that no non-trivial cylindric skew Schur functions is Schur-positive, we conjecture that this can be reconciled using the new concept of cylindric Schur-positivity. Résumé. Les travaux récents de A. Postnikov montrent que les fonctions gauches cylindriques de Schur, qui sont une généralisation des fonctions gauches de Schur, ont un lien étroit avec un problème actuellement très étudié : trouver une preuve combinatoire de la non-negativité des invariants de Gromov-Witten de 3-pointes. Après avoir expliqué cette motivation, nous étudions les fonctions gauches cylindriques de Schur du point de vue de la Schur-positivité. En utilisant un résultat de I. Gessel et C. Krattenthaler, nous généralisons une formule de A. Bertram, I. Ciocan-Fontanine et W. Fulton, donnant ainsi une expansion d’une fonction gauche cylindrique de Schur arbitraire en termes de fonctions gauches de Schur. Tandis que nous prouvons qu’aucune fonction gauche cylindrique de Schur non triviale n’est Schur-positive, nous introduisons le concept de Schur-positivité cylindrique et conjecturons que tout fonction gauche cylindrique de Schur est Schur-positive cylindrique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes

Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validi...

متن کامل

Affine Stanley Symmetric Functions

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions such as their symmetry and conjecture certain positivity properties. As an application, we relate these functions to the k-Schur functions of Lapointe, Lascoux and Morse as well as the cylindric Schur functions of Postnikov. ...

متن کامل

Necessary Conditions for Schur-positivity

In recent years, there has been considerable interest in showing that certain conditions on skew shapes A and B are sufficient for the difference sA − sB of their skew Schur functions to be Schur-positive. We determine necessary conditions for the difference to be Schur-positive. Our conditions are motivated by those of Reiner, Shaw and van Willigenburg that are necessary for sA = sB , and we d...

متن کامل

. C O ] 1 4 Se p 20 05 SCHUR POSITIVITY AND SCHUR LOG - CONCAVITY

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. We include an alternative derivation of this result directly from Haiman’s work on Schur positive immanants. Our results imply an intriguing log-concavity propert...

متن کامل

2 00 5 Schur Positivity and Schur Log - Concavity

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005